
Tomas Potuzak, Richard Lipka, Premek Brada
Reliable Software Architectures (ReliSA) research group 
Department of Computer Science and Engineering
Faculty of Applied Sciences
University of West Bohemia, Pilsen, Czech Republic 1

Interface-based Semi-automated Testing of 

Software Components



2

Introduction and Motivation I

> Component-based software engineering
> An important trend in last two decades

> Applications consisting of isolated parts called components

> Components considered black boxes

> Only interface visible, not the internal behavior of the component

> Simplification of large applications development in teams

> Better reusability and replacement of programmed functionality 

> Third party components, often with unavailable source code



3

Introduction and Motivation II

> Testing of software components within an application
> Testing of correct cooperation of components, which cannot be 

accomplished by the creators of individual components

> Often multiple versions of a single component

> Regression testing desirable when a new version of a component 

installed into an application

> Approach for semi-automated regression testing of 

components with unavailable source code
> Static analysis and runtime recording of the component’s behavior

> Comparison of recordings of an old and a new version



4

Interface-based Component Testing I

> Designed for regression testing of a new version of 

a component within an application 
> Testing whether the new version of the component exhibits the 

same behavior as its old version

> Analysis of the behavior with the old component
> Determining of interfaces, services, and methods of components

> Generation of sets of invocations for the methods

> Performing of the invocations, observing of consequences

> Storing of the invocations and their consequences into a testing

scenario file (XML)



5

Interface-based Component Testing II

> Analysis of the behavior with the new component
> The old version of a component replaced by a new version

> The same analysis performed

> Another testing scenario file stored

> Comparison of both scenarios
> The structures of both scenarios loaded and compared

> All differences reported

> The entire application subject to the testing
> Interactions of the components important to uncover their 

behavior



6

Invocation-Consequences Data Structure I

> All methods of all services of all components 

determined from the application
> By any method capable of acquiring complete signatures

> Stored into a tree data structure

> Initial set of invocation generated for all methods
> Fully automatic in current implementation, but very simplistic (for 

each parameter several values, all combinations)

> Additional values or restrictions provided by user when possible

> Added to the tree data structure



7

Invocation-Consequences Data Structure II

> Performing of invocations, observing consequences

> Possible consequences
> The return of a value

> A raised exception

> A value change in “out” parameters of a method

> A subsequent invocation of a service method of another 

component

> Change of the inner state of the component – not easily 

observable, not considered

> Consequences added to corresponding invocations



8

Invocation-Consequences Data Structure III

> Subsequent invocations
> Most important

> Invocations with “real” parameters, not generated

> Invocations added into the tree data structure to the 

corresponding method

> The invocation-driven exploration of tree data 

structure repeated several times
> To utilize the subsequent invocation from previous iteration for

better analysis of the behavior

> Stopped when no invocations and no consequences are added



9

Invocation-Consequences Data Structure IV



10

Comparison of Tree Data Structures I

> Performed level by level
> Components Services Methods Invocations 

Consequences

> When an object is only in one tree data structure, this difference is 

reported and lower levels of this object are not explored

> When an object is in both tree data structures, it is explored down 

to lower levels and the objects in lower levels are compared

> The object is identical when all its sub-objects are identical

> Invocations and consequences levels important
> Differences not detectable by static analysis



11

Comparison of Tree Data Structures II



12

Experimental Implementation

> Java & OSGi component model
> Implemented as a single OSGi component (bundle)

> Java reflection used for acquiring the signatures of methods

> Generic proxy assigned to each service to intercept all method 

invocations using OSGi hooks

> Predefined sets of values for each data type – all possible 

combinations used to generate the initial invocations



13

Validation and Results

> Two sets of test
> Dependency of the number of generated invocations on the 

number of components, methods, and their parameters

> Ability to discover the differences in behavior when a new version 

of component is installed

> Testing environment
> Standard desktop computer

> Quad-core Intel i7-4770 CPU at 3.40 GHz, 16 GB of RAM

> Windows 7 SP1 (64 bit), Java 1.6 (32 bit), Equinox OSGi

framework



14

Number of Invocations Dependencies I

> Performed using a small application of our design
> Enabling manipulation of the source code – necessary to perform 

the testing

> A simple tool for mathematical calculations and string processing



15

Number of Invocations Dependencies II

> Methods with high number of parameters problematic
> Quite rare

> Better parameter generation planned



16

Ability to Discover Differences I

> Two applications
> The simple application from previous set of test 

> CoCoME

> Three differences introduced (separately) into one 

component of each application
> One method added – change #1

> One method ceased to throw exception when invoked with null

value – change #2

> One method started to return null value instead of an instance –

change #3



17

Ability to Discover Differences II

> Results for the test application 

222020N/ADifferences (consequences)

0210N/ADifferences (invocations)

001N/ADifferences (methods)

0000Parameters changes

910890933910Return values

1091010Exceptions

725569769747Subsequent invocations

895895917895Generated invocations

3333Explorations

#3#2#1OriginalStructure



18

Ability to Discover Differences III

> Results for the CoCoME application 

1110N/ADifferences (consequences)

000N/ADifferences (invocations)

001N/ADifferences (methods)

0000Parameters changes

11231Return values

224213224224Exceptions

0000Subsequent invocations

297297299297Generated invocations

2222Explorations

#3#2#1OriginalStructure



19

Conclusion and Future Work

> An approach for semi-automated regression testing 

designed for situations when a new version of 

component is installed into an application
> The ability to discover differences demonstrated on two 

applications

> Future work
> Improved generation of parameter values for method invocations

> Work on automatic generator of complex data (i.e., objects and 

their collections)



20

Thank you for your attention

> Questions?


