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Introduction and Motivation |

> Component-based software engineering

> An important trend in last two decades

> Applications consisting of isolated parts called components

> Components considered black boxes

> Only interface visible, not the internal behavior of the component
> Simplification of large applications development in teams

> Better reusability and replacement of programmed functionality
> Third party components, often with unavailable source code
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Introduction and Motivation Ii

> Testing of software components within an application

> Testing of correct cooperation of components, which cannot be
accomplished by the creators of individual components

> Often multiple versions of a single component

> Regression testing desirable when a new version of a component
installed into an application

> Approach for semi-automated regression testing of

components with unavailable source code

> Static analysis and runtime recording of the component’s behavior
> Comparison of recordings of an old and a new version
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Interface-based Component Testing |

> Designed for regression testing of a new version of

a component within an application

> Testing whether the new version of the component exhibits the
same behavior as its old version

> Analysis of the behavior with the old component

> Determining of interfaces, services, and methods of components
> (eneration of sets of invocations for the methods

> Performing of the invocations, observing of consequences

> Storing of the invocations and their consequences into a testing
scenario file (XML)
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Interface-based Component Testing |

> Analysis of the behavior with the new component

> The old version of a component replaced by a new version
> The same analysis performed

> A
> Co
> T

nother testing scenario file stored
mparison of both scenarios
ne structures of both scenarios loaded and compared

> A

| differences reported

> The entire application subject to the testing

> |Interactions of the components important to uncover their
behavior
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Invocation-Consequences Data Structure |

> All methods of all services of all components
determined from the application

> By any method capable of acquiring complete signatures
> Stored into a tree data structure

> Initial set of invocation generated for all methods

> Fully automatic in current implementation, but very simplistic (for
each parameter several values, all combinations)

> Additional values or restrictions provided by user when possible
> Added to the tree data structure
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Invocation-Consequences Data Structure I

> Performing of invocations, observing consequences

> Possible consequences

> The return of a value
> Araised exception
> A value change in “out” parameters of a method

> A subsequent invocation of a service method of another
component

> Change of the inner state of the component — not easily
observable, not considered

> Consequences added to corresponding invocations
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Invocation-Consequences Data Structure i

> Subsequent invocations
> Most important
> Invocations with “real” parameters, not generated

> |nvocations added into the tree data structure to the
corresponding method

> The Invocation-driven exploration of tree data

structure repeated several times

> To utilize the subsequent invocation from previous iteration for
better analysis of the behavior

> Stopped when no invocations and no consequences are added
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Invocation-Consequences Data Structure IV
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b) Added part after the exploration
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Comparison of Tree Data Structures |

> Performed level by level

> Components = Services = Methods = Invocations -
Consequences

> When an object is only in one tree data structure, this difference is
reported and lower levels of this object are not explored

> When an object is in both tree data structures, it is explored down
to lower levels and the objects in lower levels are compared

> The object is identical when all its sub-objects are identical
> |nvocations and consequences levels important
> Differences not detectable by static analysis
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Comparison of Tree Data Structures |l

[;] Original tree data structure [;] Compared tree data structure
= ComponentC B = ComponentC
ServiceCA X] ServiceCA =] Same
(E ) MethodCAA = {E I Different
) MethodCAB X ) MethodCAB ¥ Added
() InvocationCABA X =) InvocationCABA |l Removed
ConsequenceCABAA W
+ ConsequenceCABAB
=) InvocationCABB = —=) InvocationCABB
ConsequenceCABBA [= ConsequenceCABBA
# | O ServiceCB
O ServiceCC =

Differences on the services level (ServiceCB added, ServiceCC re-
moved, lower levels NOT compared), on methods level (MethodCAA
removed), and on consequences level (ConsequenceCABAA repla-
ced by ConsequenceCABAB)
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Experimental Implementation

> Java & OSGi component model

> Implemented as a single OSGi component (bundle)
> Java reflection used for acquiring the signatures of methods

> (Generic proxy assigned to each service to intercept all method
invocations using OSGi hooks

> Predefined sets of values for each data type — all possible
combinations used to generate the initial invocations
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Validation and Results

> Two sets of test

> Dependency of the number of generated invocations on the
number of components, methods, and their parameters

> Ability to discover the differences in behavior when a new version
of component is installed

> Testing environment

> Standard desktop computer
> Quad-core Intel i7-4770 CPU at 3.40 GHz, 16 GB of RAM

> Windows 7 SP1 (64 bit), Java 1.6 (32 bit), Equinox OSGi
framework
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Number of Invocations Dependencies |

> Performed using a small application of our design

> Enabling manipulation of the source code — necessary to perform
the testing

> A simple tool for mathematical calculations and string processing

2 O Utilities ——(O— Text Geometry
ogger l | Text
”_Ogger d)\l Calculator (d)
|Utilities |Geometry
ICaIcuIator
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Number of Invocations Dependencies |l
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> Methods with high number of parameters problematic

> Quite rare
> Better parameter generation planned
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Ability to Discover Differences |

> Two applications
> The simple application from previous set of test
> CoCoME
> Three differences introduced (separately) into one

component of each application

> One method added — change #1

> One method ceased to throw exception when invoked with null
value — change #2

> One method started to return null value instead of an instance —
change #3
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Ability to Discover Differences Il

> Results for the test application

Structure Original #1 #2 #3
Explorations 3 3 3 3
Generated invocations 895 917 895 895
Subsequent invocations 747 769 569 725
Exceptions 10 10 9 10
Return values 910 933 890 910
Parameters changes 0 0 0 0
Differences (methods) N/A 1 0 0
Differences (invocations) N/A 0 21 0
Differences (consequences) N/A 0 202 22
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Ability to Discover Differences lli

> Results for the CoCoME application

Structure Original #1 #2 #3
Explorations 2 2 2 2
Generated invocations 297 299 297 297
Subsequent invocations 0 0 0 0
Exceptions 224 224 213 224
Return values 1 3 12 1
Parameters changes 0 0 0 0
Differences (methods) N/A 1 0 0
Differences (invocations) N/A 0 0 0
Differences (consequences) N/A 0 11 1
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Conclusion and Future Work

> An approach for semi-automated regression testing
designed for situations when a new version of

component is installed into an application

> The ability to discover differences demonstrated on two
applications

> Future work

> Improved generation of parameter values for method invocations

> Work on automatic generator of complex data (i.e., objects and
their collections)
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Thank you for your attention

> Questions?
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