Interface-based Semi-automated Testing of
Software Components

Tomas Potuzak, Richard Lipka, Premek Brada
Reliable Software Architectures (ReliSA) research group

Department of Computer Science and Engineering
Faculty of Applied Sciences
University of West Bohemia, Pilsen, Czech Republic

Introduction and Motivation |

> Component-based software engineering

> An important trend in last two decades

> Applications consisting of isolated parts called components

> Components considered black boxes

> Only interface visible, not the internal behavior of the component
> Simplification of large applications development in teams

> Better reusability and replacement of programmed functionality
> Third party components, often with unavailable source code

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Introduction and Motivation Ii

> Testing of software components within an application

> Testing of correct cooperation of components, which cannot be
accomplished by the creators of individual components

> Often multiple versions of a single component

> Regression testing desirable when a new version of a component
installed into an application

> Approach for semi-automated regression testing of

components with unavailable source code

> Static analysis and runtime recording of the component’s behavior
> Comparison of recordings of an old and a new version

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Interface-based Component Testing |

> Designed for regression testing of a new version of

a component within an application

> Testing whether the new version of the component exhibits the
same behavior as its old version

> Analysis of the behavior with the old component

> Determining of interfaces, services, and methods of components
> (eneration of sets of invocations for the methods

> Performing of the invocations, observing of consequences

> Storing of the invocations and their consequences into a testing
scenario file (XML)

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Interface-based Component Testing |

> Analysis of the behavior with the new component

> The old version of a component replaced by a new version
> The same analysis performed

> A
> Co
> T

nother testing scenario file stored
mparison of both scenarios
ne structures of both scenarios loaded and compared

> A

| differences reported

> The entire application subject to the testing

> |Interactions of the components important to uncover their
behavior

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Invocation-Consequences Data Structure |

> All methods of all services of all components
determined from the application

> By any method capable of acquiring complete signatures
> Stored into a tree data structure

> Initial set of invocation generated for all methods

> Fully automatic in current implementation, but very simplistic (for
each parameter several values, all combinations)

> Additional values or restrictions provided by user when possible
> Added to the tree data structure

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Invocation-Consequences Data Structure I

> Performing of invocations, observing consequences

> Possible consequences

> The return of a value
> Araised exception
> A value change in “out” parameters of a method

> A subsequent invocation of a service method of another
component

> Change of the inner state of the component — not easily
observable, not considered

> Consequences added to corresponding invocations

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Invocation-Consequences Data Structure i

> Subsequent invocations
> Most important
> Invocations with “real” parameters, not generated

> |nvocations added into the tree data structure to the
corresponding method

> The Invocation-driven exploration of tree data

structure repeated several times

> To utilize the subsequent invocation from previous iteration for
better analysis of the behavior

> Stopped when no invocations and no consequences are added

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Invocation-Consequences Data Structure IV

- — S — = =
structure component0|l |service0 | |methodO0 invocation0
component0 { [|service0 H [Imethod0 {' ||linvocation0 ' |[parameter0
component1 | |[service1 + [|method1 H, |[invocation1 1 |[parameter1
rAamnanantld “ eamsinal mathaAdAl “ nunn~atianil “ navamatarN
UUIIIPUIIGIII.I\ '|'| SCIVIVLVO L. [1HHIGLULITVUIVI '|'| nnivvvativiiiyv |Jal alliciLvci v

+component1 "Iservice1 +‘method1

[invAarcatinnn|

learmricran | lmathadn |

a) Generated tree data structure

structure i component0 "Tservice0 [[method0 [[invocation0
component0 service0 H |Imethod0 H [|invocation0 H ||parameter0Q
component1 service1 + |[|[method1 H [|linvocation1 i |[parameter

componentKﬂ servicelL methodM]] invocationNH| [[parameterO

consequencel
consequence1

consequenceP

1component1 *Iservice1 +‘method1
lmathadn |

b) Added part after the exploration

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

learvican | linuAnratinnn |

Comparison of Tree Data Structures |

> Performed level by level

> Components = Services = Methods = Invocations -
Consequences

> When an object is only in one tree data structure, this difference is
reported and lower levels of this object are not explored

> When an object is in both tree data structures, it is explored down
to lower levels and the objects in lower levels are compared

> The object is identical when all its sub-objects are identical
> |nvocations and consequences levels important
> Differences not detectable by static analysis

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Comparison of Tree Data Structures |l

[;] Original tree data structure [;] Compared tree data structure
= ComponentC B = ComponentC
ServiceCA X] ServiceCA =] Same
(E) MethodCAA = {E I Different
) MethodCAB X) MethodCAB ¥ Added
() InvocationCABA X =) InvocationCABA |l Removed
ConsequenceCABAA W
+ ConsequenceCABAB
=) InvocationCABB = —=) InvocationCABB
ConsequenceCABBA [= ConsequenceCABBA
| O ServiceCB
O ServiceCC =

Differences on the services level (ServiceCB added, ServiceCC re-
moved, lower levels NOT compared), on methods level (MethodCAA
removed), and on consequences level (ConsequenceCABAA repla-
ced by ConsequenceCABAB)

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Experimental Implementation

> Java & OSGi component model

> Implemented as a single OSGi component (bundle)
> Java reflection used for acquiring the signatures of methods

> (Generic proxy assigned to each service to intercept all method
invocations using OSGi hooks

> Predefined sets of values for each data type — all possible
combinations used to generate the initial invocations

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Validation and Results

> Two sets of test

> Dependency of the number of generated invocations on the
number of components, methods, and their parameters

> Ability to discover the differences in behavior when a new version
of component is installed

> Testing environment

> Standard desktop computer
> Quad-core Intel i7-4770 CPU at 3.40 GHz, 16 GB of RAM

> Windows 7 SP1 (64 bit), Java 1.6 (32 bit), Equinox OSGi
framework

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Number of Invocations Dependencies |

> Performed using a small application of our design

> Enabling manipulation of the source code — necessary to perform
the testing

> A simple tool for mathematical calculations and string processing

2 O Utilities ——(O— Text Geometry
ogger l | Text
”_Ogger d)\l Calculator (d)
|Utilities |Geometry
ICaIcuIator

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Number of Invocations Dependencies |l

% 10°1{mint 4000 70000

= 10°40String 60000

S 4 3000 50000

S 10 40000

c 3]

< 102 2000 30000

5 10 1000- 20000

2 10 i

g 10 10000 j

=) 1' 0' O' T T T T

< 1234567 8910 1234567 8910 1 2 3 4 5

Number of parameters Number of methods Number of components

a) On the number of parame- b) On the number of methods c¢) On the number of components

ters of a single method (5 parameters per method) (10 methods, 26 parameters in

total per component)

> Methods with high number of parameters problematic

> Quite rare
> Better parameter generation planned

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Ability to Discover Differences |

> Two applications
> The simple application from previous set of test
> CoCoME
> Three differences introduced (separately) into one

component of each application

> One method added — change #1

> One method ceased to throw exception when invoked with null
value — change #2

> One method started to return null value instead of an instance —
change #3

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Ability to Discover Differences Il

> Results for the test application

Structure Original #1 #2 #3
Explorations 3 3 3 3
Generated invocations 895 917 895 895
Subsequent invocations 747 769 569 725
Exceptions 10 10 9 10
Return values 910 933 890 910
Parameters changes 0 0 0 0
Differences (methods) N/A 1 0 0
Differences (invocations) N/A 0 21 0
Differences (consequences) N/A 0 202 22

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Ability to Discover Differences lli

> Results for the CoCoME application

Structure Original #1 #2 #3
Explorations 2 2 2 2
Generated invocations 297 299 297 297
Subsequent invocations 0 0 0 0
Exceptions 224 224 213 224
Return values 1 3 12 1
Parameters changes 0 0 0 0
Differences (methods) N/A 1 0 0
Differences (invocations) N/A 0 0 0
Differences (consequences) N/A 0 11 1

KATEDRA INFORMATIKY
A VYPOCETNI TECHNIKY

Conclusion and Future Work

> An approach for semi-automated regression testing
designed for situations when a new version of

component is installed into an application

> The ability to discover differences demonstrated on two
applications

> Future work

> Improved generation of parameter values for method invocations

> Work on automatic generator of complex data (i.e., objects and
their collections)

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Thank you for your attention

> Questions?

KATEDRA INFORMATIKY
<KIV> IR

