Deep Object Comparison for Interface-based
Regression Testing of Software Components

Tomas Potuzak, Richard Lipka

Reliable Software Architectures (ReliSA) research group
Department of Computer Science and Engineering
Faculty of Applied Sciences

University of West Bohemia, Pilsen, Czech Republic

Introduction and Motivation |

> Component-based software engineering

> An important trend in last two decades
> Applications consisting of isolated parts called components
> Components considered black boxes with public interfaces

> Third party components, often with unavailable source code, often
multiple versions of a single component

> Semi-automated regression testing of components

> Testing within an application with a new component version added
> Static analysis and runtime recording of the component’s behavior
> Comparison of recordings of an old and a new version

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Introduction and Motivation Ii

> Comparison of various objects during the testing
Process
> Standard equals () method used in experimental implementation

> Method not implemented at all, implemented incorrectly, or not
considered all attributes values in some objects

> Deep object comparison

> Created to mitigate the problems associated with equals ()
method

> Objects compared based on the “shape” of internal structure and all
corresponding primitive values

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Interface-based Component Testing |

> Designed for regression testing of a new version of

a component within an application

> Testing whether the new version of the component exhibits the
same behavior as its old version

> Analysis of the behavior with the old component

> Determining of interfaces, services, and methods of components
> (eneration of sets of invocations for the methods

> Performing of the invocations, observing of consequences

> Storing of the invocations and their consequences into a testing
scenario file (XML)

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Interface-based Component Testing |

> Analysis of the behavior with the new component

> The old version of a component replaced by a new version
> The same analysis performed

> A
> Co
> T

nother testing scenario file stored
mparison of both scenarios
ne structures of both scenarios loaded and compared

> A

| differences reported

> The entire application subject to the testing

> |Interactions of the components important to uncover their
behavior

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Need for Deep Object Comparison

> (General objects stored in both scenarios

> For example return values, parameters, and exceptions

> Source code unavailable = implementation of equals () not
known

> Object comparisons performed

> During construction of the scenario
> During comparison of two scenarios

> Scenario stored in a XML file

> Any structure utilized for object comparison must be able to be
stored in a XML file

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Deep Object Comparison |

Aa| —P| A B B A ﬁ&'”
S i e] e
> Object equality e Tl T =

a) Objects considered equal - same shape, same primitive values

" Aa[P A B B A lqAb[]
> ObJeCtS Of the intnrinti inti[42] ||intn[10] T
Br1[] B | Br1[
same class e e e
b) Objects considered equal - same shape, same primitive values
> Graph pa[R 5 A oAb]
inti[42] intn[10]

L
Ew

#T

I intn{ 10 |
representations of reel0] -
internal structures s o il (o0 B

c) Objects considered different - different primitive values

| | al]
iIsomorphic S F U
S Bri[—] B Bri[—-

> odMme B r2 [l nti o] |/[Br2[
corres po N d i N g d) Objects considered different - different shapes

B B
inti[42] |inti[42]
Bri_—| B

B r2[inti[42]

e) Objects considered different - different shapes

Aa[][A «Ab[]

intn| 10 |
Br2[

primitive values

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

"

TT
m >

Deep Object Comparison I

> Forming of an object’s graph
> Directed vertex- and edge-labeled graph

> Each vertex corresponding to an a single object of the internal
structure of the compared object (with names, values and types of
all primitive values and references to the object)

> The starting vertex corresponding to the compared object
> Each directed edge representing a reference attribute
> Arrays treated as objects with their elements treated as variables

> Breadth-First Search (BFS) of object internal structure for
construction of the graph, list of visited objects to handle cycles

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Deep Object Comparison |

> |Ds assigned to all vertices

> After graph creation
> For storing of the graph to the XML file

Aa| —p A B Vertex 1
intn| 10 inti| 42 |4 Vortox 0 B
eriex B r1 - 3
B r1 B int | 1 |42
A

Br2 rinti 0 : ? Vertex 2

7S 7S int| n [10 r . 5

int | | 0

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Deep Object Comparison IV

> Comparison of two graphs

> References to the original objects not used

> Graphs containing all necessary values

> Parallel BFS of both graphs

> Both graphs explored in one loop

> Checking of primitive values in corresponding vertices

> Comparison ended prematurely due to difference in primitive
values and/or missing corresponding vertex

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Validation and Results |

> Testing environment hardware
> Standard notebook
> Dual-core Intel 15-6200U at 2.30 GHz with HyperThreading
> 8 GB of RAM
> 250 GB SSD /500 GB HDD
> Testing environment software
> Windows 7 SP1 (64 bit)
> Java 1.6 (32 bit)
> Equinox OSGi framework

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Validation and Results |l

> Correct functionality of the algorithm

> Comparison of pairs of similar or equal objects
> 9 pairs with variously complicated internal structures

> Four tests performed for each pair

> Both objects created in memory and compared (once equal, once
similar, but slightly different)

> Both objects created in memory, one stored to a file, loaded and
then objects compared (once equal, once similar, but slightly
different)

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Validation and Results |l

> Example of an object used for testing

Aa q String — ArrayList<A>

vA charf] value int size 2
A parent null char[]v Object[] elementData
int number | 10 a b |
String string _ v
List<A> list Obijectl]
A[] array null|null { null|null { null| null { null | null

q Al]
null| 1
A A 4 r : A 4 Iﬁ
A A A A

A parent null [{|A parent A parent A parent

int number | 0 ||lintnumber | 2 || |int number | 3 |[|||int number | 4
String string [null|||String string [null ||| [String string | null||||String string [null
List<A> list |null|||List<A> list |null||| |lList<A> list |null|| |List<A> list |null

Al] array null|[{All array null |[| |All array null|[||All array null

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

=

Validation and Results IV

> Algorithm returning expected values in every

instance
Pair of Both objects in memory One object saved & loaded
objects Equal Different Equal Different
1 true false true false
2 true false true false
3 true false true false
4 true false true false
5 true false true false

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Validation and Results V

> Performance of the algorithm

> Increasingly complex objects generated and compared

> Only equal objects used for comparison — worst case scenario for
the comparison time

> Graph construction phase and graph comparison

phase times observed separately

> Graph construction phase needed only once (during the scenario
construction)

> Graph comparison phase potentially needed many times (during
the scenario construction and during the scenarios comparison)

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Validation and Results Vi

> Graph comparison times far lower than graph

comparison times
> Java reflection, sequential searching of visited vertices

Graphs Graph compari-
Vertices count Edges count construction aph COmpd
. son time [ms]
time [ms]
33 42 1.9 0.1
333 442 7.6 0.7
3333 4442 110.7 4.6
33 333 44 442 10 131.2 28.8

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Conclusion and Future Work

> Deep object comparison described

> Implemented, but not yet included into our interface-based
regression testing

> Future work

> Incorporate the deep object comparison into our interface-based
regression testing

> Utilization of the deep object comparison in another project
focused on generation of complex testing data (comparison of
generated objects and/or their parts to remove duplicity)

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

Thank you for your attention

> Questions?

KATEDRA INFORMATIKY
<KIV> IR

