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Introduction and Motivation |

> Component-based software engineering

> An important trend in last two decades
> Applications consisting of isolated parts called components
> Components considered black boxes with public interfaces

> Third party components, often with unavailable source code, often
multiple versions of a single component

> Semi-automated regression testing of components

> Testing within an application with a new component version added
> Static analysis and runtime recording of the component’s behavior
> Comparison of recordings of an old and a new version
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Introduction and Motivation Ii

> Comparison of various objects during the testing
Process
> Standard equals () method used in experimental implementation

> Method not implemented at all, implemented incorrectly, or not
considered all attributes values in some objects

> Deep object comparison

> Created to mitigate the problems associated with equals ()
method

> Objects compared based on the “shape” of internal structure and all
corresponding primitive values

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY




Interface-based Component Testing |

> Designed for regression testing of a new version of

a component within an application

> Testing whether the new version of the component exhibits the
same behavior as its old version

> Analysis of the behavior with the old component

> Determining of interfaces, services, and methods of components
> (eneration of sets of invocations for the methods

> Performing of the invocations, observing of consequences

> Storing of the invocations and their consequences into a testing
scenario file (XML)
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Interface-based Component Testing |

> Analysis of the behavior with the new component

> The old version of a component replaced by a new version
> The same analysis performed

> A
> Co
> T

nother testing scenario file stored
mparison of both scenarios
ne structures of both scenarios loaded and compared

> A

| differences reported

> The entire application subject to the testing

> |Interactions of the components important to uncover their
behavior
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Need for Deep Object Comparison

> (General objects stored in both scenarios

> For example return values, parameters, and exceptions

> Source code unavailable = implementation of equals () not
known

> Object comparisons performed

> During construction of the scenario
> During comparison of two scenarios

> Scenario stored in a XML file

> Any structure utilized for object comparison must be able to be
stored in a XML file
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Deep Object Comparison |

Aa| —P| A B B A ﬁ&'”
S i e ] e
> Object equality e Tl T =

a) Objects considered equal - same shape, same primitive values

" Aa[ P A B B A lqAb[ ]
> ObJeCtS Of the intnrinti inti[42] ||intn[10] T
Br1[ ] B | Br1[
same class e e e
b) Objects considered equal - same shape, same primitive values
> Graph pa[ R 5 A oAb ]
inti[42] intn[10 ]

L
Ew

#T

I intn{ 10 |
representations of reel0] -
internal structures s o il (o0 B

c) Objects considered different - different primitive values

| | al ]
iIsomorphic S F U
S Bri[ —] B Bri[ —-

> odMme B r2 [l nti o] |/[Br2[
corres po N d i N g d) Objects considered different - different shapes

B B
inti[42]  |inti[42]
Bri_—| B

B r2[ inti[42]

e) Objects considered different - different shapes

Aa[ ][ A «Ab[]

intn| 10 |
Br2[

primitive values

KATEDRA INFORMATIKY
<KIV> A VYPOCETNI TECHNIKY

"

TT
m >




Deep Object Comparison I

> Forming of an object’s graph
> Directed vertex- and edge-labeled graph

> Each vertex corresponding to an a single object of the internal
structure of the compared object (with names, values and types of
all primitive values and references to the object)

> The starting vertex corresponding to the compared object
> Each directed edge representing a reference attribute
> Arrays treated as objects with their elements treated as variables

> Breadth-First Search (BFS) of object internal structure for
construction of the graph, list of visited objects to handle cycles
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Deep Object Comparison |

> |Ds assigned to all vertices

> After graph creation
> For storing of the graph to the XML file
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Deep Object Comparison IV

> Comparison of two graphs

> References to the original objects not used

> Graphs containing all necessary values

> Parallel BFS of both graphs

> Both graphs explored in one loop

> Checking of primitive values in corresponding vertices

> Comparison ended prematurely due to difference in primitive
values and/or missing corresponding vertex
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Validation and Results |

> Testing environment hardware
> Standard notebook
> Dual-core Intel 15-6200U at 2.30 GHz with HyperThreading
> 8 GB of RAM
> 250 GB SSD /500 GB HDD
> Testing environment software
> Windows 7 SP1 (64 bit)
> Java 1.6 (32 bit)
> Equinox OSGi framework
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Validation and Results |l

> Correct functionality of the algorithm

> Comparison of pairs of similar or equal objects
> 9 pairs with variously complicated internal structures

> Four tests performed for each pair

> Both objects created in memory and compared (once equal, once
similar, but slightly different)

> Both objects created in memory, one stored to a file, loaded and
then objects compared (once equal, once similar, but slightly
different)
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Validation and Results |l

> Example of an object used for testing

Aa q String — ArrayList<A>

vA charf] value int size 2
A parent null char[]v Object[] elementData
int number | 10 a b |
String string _ v
List<A> list Obijectl]
A[] array null|null { null|null { null| null { null | null

q Al]
null| 1
A A 4 r : A 4 Iﬁ
A A A A

A parent null [{|A parent A parent A parent

int number | 0 ||lintnumber | 2 || |int number | 3 |[|||int number | 4
String string [ null|||String string [null ||| [String string | null||||String string [null
List<A> list |null|||List<A> list |null||| |lList<A> list |null|| |List<A> list |null

Al] array null|[{All array null |[| |All array null|[||All array null
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Validation and Results IV

> Algorithm returning expected values in every

instance
Pair of Both objects in memory One object saved & loaded
objects Equal Different Equal Different
1 true false true false
2 true false true false
3 true false true false
4 true false true false
5 true false true false
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Validation and Results V

> Performance of the algorithm

> Increasingly complex objects generated and compared

> Only equal objects used for comparison — worst case scenario for
the comparison time

> Graph construction phase and graph comparison

phase times observed separately

> Graph construction phase needed only once (during the scenario
construction)

> Graph comparison phase potentially needed many times (during
the scenario construction and during the scenarios comparison)
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Validation and Results Vi

> Graph comparison times far lower than graph

comparison times
> Java reflection, sequential searching of visited vertices

Graphs Graph compari-
Vertices count Edges count construction aph COmpd
. son time [ms]
time [ms]
33 42 1.9 0.1
333 442 7.6 0.7
3333 4442 110.7 4.6
33 333 44 442 10 131.2 28.8
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Conclusion and Future Work

> Deep object comparison described

> Implemented, but not yet included into our interface-based
regression testing

> Future work

> Incorporate the deep object comparison into our interface-based
regression testing

> Utilization of the deep object comparison in another project
focused on generation of complex testing data (comparison of
generated objects and/or their parts to remove duplicity)
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Thank you for your attention

> Questions?
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