
Tomas Potuzak, Richard Lipka
Reliable Software Architectures (ReliSA) research group 
Department of Computer Science and Engineering
Faculty of Applied Sciences
University of West Bohemia, Pilsen, Czech Republic 1

Deep Object Comparison for Interface-based 

Regression Testing of Software Components



2

Introduction and Motivation I

> Component-based software engineering
> An important trend in last two decades

> Applications consisting of isolated parts called components

> Components considered black boxes with public interfaces

> Third party components, often with unavailable source code, often 

multiple versions of a single component

> Semi-automated regression testing of components
> Testing within an application with a new component version added

> Static analysis and runtime recording of the component’s behavior

> Comparison of recordings of an old and a new version



3

Introduction and Motivation II

> Comparison of various objects during the testing 

process
> Standard equals() method used in experimental implementation

> Method not implemented at all, implemented incorrectly, or not 

considered all attributes values in some objects

> Deep object comparison
> Created to mitigate the problems associated with equals()

method

> Objects compared based on the “shape” of internal structure and all 

corresponding primitive values



4

Interface-based Component Testing I

> Designed for regression testing of a new version of 

a component within an application 
> Testing whether the new version of the component exhibits the 

same behavior as its old version

> Analysis of the behavior with the old component
> Determining of interfaces, services, and methods of components

> Generation of sets of invocations for the methods

> Performing of the invocations, observing of consequences

> Storing of the invocations and their consequences into a testing

scenario file (XML)



5

Interface-based Component Testing II

> Analysis of the behavior with the new component
> The old version of a component replaced by a new version

> The same analysis performed

> Another testing scenario file stored

> Comparison of both scenarios
> The structures of both scenarios loaded and compared

> All differences reported

> The entire application subject to the testing
> Interactions of the components important to uncover their 

behavior



6

Need for Deep Object Comparison

> General objects stored in both scenarios
> For example return values, parameters, and exceptions

> Source code unavailable implementation of equals() not 

known

> Object comparisons performed
> During construction of the scenario

> During comparison of two scenarios

> Scenario stored in a XML file
> Any structure utilized for object comparison must be able to be 

stored in a XML file



7

Deep Object Comparison I

> Object equality
> Objects of the 

same class

> Graph 

representations of 

internal structures 

isomorphic

> Same 

corresponding 

primitive values



8

Deep Object Comparison II

> Forming of an object’s graph
> Directed vertex- and edge-labeled graph

> Each vertex corresponding to an a single object of the internal 

structure of the compared object (with names, values and types of 

all primitive values and references to the object)

> The starting vertex corresponding to the compared object

> Each directed edge representing a reference attribute

> Arrays treated as objects with their elements treated as variables

> Breadth-First Search (BFS) of object internal structure for 

construction of the graph, list of visited objects to handle cycles



9

Deep Object Comparison III

> IDs assigned to all vertices 
> After graph creation

> For storing of the graph to the XML file



10

Deep Object Comparison IV

> Comparison of two graphs
> References to the original objects not used

> Graphs containing all necessary values

> Parallel BFS of both graphs

> Both graphs explored in one loop

> Checking of primitive values in corresponding vertices

> Comparison ended prematurely due to difference in primitive 

values and/or missing corresponding vertex



11

Validation and Results I

> Testing environment hardware
> Standard notebook

> Dual-core Intel i5-6200U at 2.30 GHz with HyperThreading

> 8 GB of RAM

> 250 GB SSD / 500 GB HDD

> Testing environment software
> Windows 7 SP1 (64 bit)

> Java 1.6 (32 bit)

> Equinox OSGi framework



12

Validation and Results II

> Correct functionality of the algorithm
> Comparison of pairs of similar or equal objects

> 5 pairs with variously complicated internal structures

> Four tests performed for each pair
> Both objects created in memory and compared (once equal, once 

similar, but slightly different)

> Both objects created in memory, one stored to a file, loaded and

then objects compared (once equal, once similar, but slightly 

different)



13

Validation and Results III

> Example of an object used for testing



14

Validation and Results IV

> Algorithm returning expected values in every 

instance

falsetruefalsetrue5

falsetruefalsetrue4

falsetruefalsetrue3

falsetruefalsetrue2

falsetruefalsetrue1

DifferentEqualDifferentEqual

One object saved & loadedBoth objects in memoryPair of 

objects



15

Validation and Results V

> Performance of the algorithm
> Increasingly complex objects generated and compared

> Only equal objects used for comparison – worst case scenario for 

the comparison time

> Graph construction phase and graph comparison 

phase times observed separately
> Graph construction phase needed only once (during the scenario 

construction)

> Graph comparison phase potentially needed many times (during 

the scenario construction and during the scenarios comparison)



16

Validation and Results VI

> Graph comparison times far lower than graph 

comparison times
> Java reflection, sequential searching of visited vertices

28.810 131.244 44233 333

4.6110.74 4423 333

0.77.6442333

0.11.94233

Graph compari-

son time [ms]

Graphs 

construction 

time [ms]

Edges countVertices count



17

Conclusion and Future Work

> Deep object comparison described
> Implemented, but not yet included into our interface-based 

regression testing

> Future work
> Incorporate the deep object comparison into our interface-based 

regression testing

> Utilization of the deep object comparison in another project 

focused on generation of complex testing data (comparison of 

generated objects and/or their parts to remove duplicity)



18

Thank you for your attention

> Questions?


