
Search for the Memory Duplicities in the Java
Applications Using Shallow and Deep Object
Comparison
RICHARD LIPKA, TOMÁŠ POTUŽÁK

FedCSIS 2019, 2. SEPTEMBER

Reliable Software Architectures
research group

Memory issues in Java
Memory leaks, real ones, are rare, as a garbage collection should prevent them completely

Memory bloat (Mitchell, 2010)is common, as programmers often do not pay enough attention
to the design of their programs
◦ Collections are misused or left empty

◦ Null pointers can occupy significant amount of space

◦ Automated layers are creating instances without much control of the programmers

◦ Duplicitous instances occupy memory

Documented in real software, common in students projetcs

02.09.2019 SEARCH FOR MEMORY DUPLICATES, FEDCSIS 2019 2

Duplicities in memory
Duplicities (or clones) are often looked up in the source codes, as a well known source of
problems
◦ But they can exist in the heap memory as well

◦ Causing similar issues – data consistency, security, performance

Garbage collection should be able to remove unnecessary instances
◦ But it is based only on the existence or non-existence of the reference when programmer (or some

automated layer) keeps references, GC cannot work properly

◦ Costs time, so the programs with large memory footprint tends to run slower

? How common is this problem ?

? Can the identical instances be merged into one ?

02.09.2019 SEARCH FOR MEMORY DUPLICATES, FEDCSIS 2019 3

Causes
We do not really know, but there are some suspicions:

◦ ? Fast development using automation tools ?

◦ ? Lack of attention to the program design ?

◦ ? Lack of experience ?

◦ ? Relying on the magic of the garbage collection ?

02.09.2019 SEARCH FOR MEMORY DUPLICATES, FEDCSIS 2019 4

Automated solution in virtual machine?
Strings are deduplicated automatically
◦ They are final – after creation cannot be changed no problems with copies intended for the change

in the future

◦ They are simple – virtual machine can easily compare them

What about complex objects?
◦ There are proposal in the literature, but no implementation

◦ Runtime analysis of identical instances is time consuming, the time it takes is difficult to predict as the
classes can be arbitrary complex

02.09.2019 SEARCH FOR MEMORY DUPLICATES, FEDCSIS 2019 5

Analysis of the memory
Too expensive to perform on the runtime, but can be done on the stored heap dumps
◦ Java can safely store heap content on the disk in any time

◦ Search for duplicities is more troubleshooting, performed only when needed

Managed memory makes analysis of the heap much easier – memory contains not only data but
also the description of the structures
◦ The same approach for C programs is a significant challenge, structure understandable only to the

program itself

02.09.2019 SEARCH FOR MEMORY DUPLICATES, FEDCSIS 2019 6

What makes instances identical?
Operator == compares only the references useless for
our purpose

equals() method can be implemented in any way

 we need to compare instances attribute by attribute
◦ Identical data in each attribute = identical instances

◦ Comparison only within one class?

02.09.2019 SEARCH FOR MEMORY DUPLICATES, FEDCSIS 2019 7

Class A

attr_1: int

attr_2: String

Class B

attr_1: int

attr_2: String

Class C

attr_1: int

attr_2: String

attr_3: int

equal

classes

different

classes

How to deal with references?
Shallow comparison deals only with the attribute values
◦ But is much faster and performed only within one class

02.09.2019 SEARCH FOR MEMORY DUPLICATES, FEDCSIS 2019 8

Class A
attr_1: int

attr_2: String

attr_3: Class B

= 10

= "aaa"

=

Class A
attr_1: int

attr_2: String

attr_3: Class B

= 10

= "aaa"

=

Class B
attr_1: float

attr_2: float

= 1.0

= 2.0

Class A
attr_1: int

attr_2: String

attr_3: Class B

= 10

= "aaa"

=

Class A
attr_1: int

attr_2: String

attr_3: Class B

= 10

= "aaa"

=

Class B
attr_1: float

attr_2: float

= 1.0

= 2.0

Class B
attr_1: float

attr_2: float

= 1.0

= 2.0

Equal instances

Equal instances

Different instances

Different references

How to deal with references?
Deep comparison compares the whole structures
◦ The analysis has to be performed recursively

◦ Can be very time demanding – especially with arrays or collections

◦ Cycles have to be broken – graph transformed to spanning tree

02.09.2019 SEARCH FOR MEMORY DUPLICATES, FEDCSIS 2019 9

Class A
attr_1: int

attr_2: String

attr_3: Class B

= 10

= "aaa"

=

Class A
attr_1: int

attr_2: String

attr_3: Class B

= 10

= "aaa"

=

Class B
attr_1: float

attr_2: float

= 1.0

= 2.0

Class A
attr_1: int

attr_2: String

attr_3: Class B

= 10

= "aaa"

=

Class A
attr_1: int

attr_2: String

attr_3: Class B

= 10

= "aaa"

=

Class B
attr_1: float

attr_2: float

= 1.0

= 2.0

Class B
attr_1: float

attr_2: float

= 1.0

= 2.0

Equal instances

Equal instances

Equal instances

Different references

Comparison within classes
Identical instances analysed within one class –
shallow comparison
◦ Complexity 𝑂(𝑛2) , but reduced 𝑛

(only within one class, comparison stops after
first difference is found)

Deep comparison in two steps
◦ Shallow comparison to prepare information

about identical attributes

◦ Then comparison of the graph structures

02.09.2019 SEARCH FOR MEMORY DUPLICATES, FEDCSIS 2019 10

Input stream

Class comparator

Field comparator

Class A

instance 1

Class A

instance 2

Class B

instance 1

Class A

instance 3

...

...

Class A map Class B map

Class A

group 1

Class A

group 2

Class A

group 3

Class A

group 4

Assign instance

to appropriate

class

Class A

instance 3

Class A

instance 3

Compares field by field

Assign to group if identical

or

Creates a new group

Experiments
Simple application for verification
◦ Known data structures and number of duplicities

Spring Boot framework (2.1.4) with Hello
World application

Eclipse (4.10.0) with one project in workspace,
just after starting

IntelliJ Idea (2018.3)

TomEE with complex graph analysing
application

Memory dump obtained using

jmap –dump:live,

file = <file -path>

<pid >

Should provide memory content after GC

02.09.2019 SEARCH FOR MEMORY DUPLICATES, FEDCSIS 2019 11

Results – complexity (simple application)

02.09.2019 SEARCH FOR MEMORY DUPLICATES, FEDCSIS 2019 12

Results – Spring boot
Package
name

Classes Instances
Found
duplicates

Duration [ms]

org 2416 9093 347 14759

org.springframework 1555 6053 329 8214

org.springframework.boot 380 1506 27 4229

org.springframework.core 196 1585 5 4425

org.springframework.web 296 239 37 4108

org.springframework.boot.web 75 27 1 4002

27 MB of data, only org. package analysed

Signature class - 38 identical instances (duplicates in table – at least two clones)

DefaultFlowMessageFactory class - 34 identical instances.

02.09.2019 SEARCH FOR MEMORY DUPLICATES, FEDCSIS 2019 13

Results – IntelliJ Idea
Package
name

Classes Instances
Found
duplicates

Duration [ms]

org 2016 157743 283 8425230

com 7687 77927 261 1290908

sun 1119 15620 31 26023

74 MB of data, packages listed in the table analysed

org.jdom.Text – several instances with many clones
(largest one – 11577 identical instances, several characters from
DOM of the loaded project)

02.09.2019 SEARCH FOR MEMORY DUPLICATES, FEDCSIS 2019 14

Results - Eclipse
Package
name

Classes Instances
Found
duplicates

Duration [ms]

org 9647 141970 756 5007822

com 919 27906 865 90271

java 1155 313405 39 23596884

sun 929 28092 20 91228

ch 244 539 5 7335

92 MB of data, packages listed in the table analysed

org.eclipse.swt.widgets.TypedListener - 444 identical instances

org.eclipse.sisu.plexus.ConfigurationImpl - 16 identical instances, each
750 characters of XML fragment

02.09.2019 SEARCH FOR MEMORY DUPLICATES, FEDCSIS 2019 15

Results – TomEE with visualisation server
Only domain objects of the application analysed

Largest heap dump (about 370 MB, only shallow comparison took about 3 hours)

3 identical graph structures hold in memory for each session + identical data in two sessions

02.09.2019 SEARCH FOR MEMORY DUPLICATES, FEDCSIS 2019 16

Conclusion
Main contribution – prototype of the analysis tool
◦ Can work as additional support to the memory profilers

Confirmation of the existence of the clones in real programs

Future work
◦ Parallelisation of the comparison algorithm

(current implementation is quite slow)

◦ Detection of the real causes of the duplicate existence – analysis o runtime?

◦ Advice if the instances can be merged – analysis on runtime?

02.09.2019 SEARCH FOR MEMORY DUPLICATES, FEDCSIS 2019 17

Thank you for your attention
Questions?

02.09.2019 SEARCH FOR MEMORY DUPLICATES, FEDCSIS 2019 18

